Properties of Platonic Solids				
Regular Polyhedron	Vertices (V)	Edges (E)	Faces (F)	V-E+F
tetrahedron	4	6	4	2
cube	8	12	6	2
octahedron	6	12	8	2
dodecahedron	20	30	12	2
icosahedron	12	30	20	2

Example 1 Hexagons and Platonic Solids

Why are none of the Platonic solids made with regular hexagons? Explain using angle measures.

SOLUTION

Each angle in a regular hexagon measures 120°. At least three hexagons would need to be placed at each vertex.

This means that each vertex would have a total measure of $120^{\circ} \times 3 = 360^{\circ}$.

But, 360° is the angle of a point on a plane. If the angles added to 360°, the hexagons would make a tessellation, not a polyhedron.

Example 2 Angles of Platonic Solids

a. What is the sum of the measures of the angles at a vertex of a regular octahedron?

۲

SOLUTION

s.

Each vertex is the meeting point of four equilateral triangles. The measure of each angle in an equilateral triangle is 60°.

 $60^{\circ} \times 4 = 240^{\circ}$

The sum of the angles is 240°.

(b.) What is the sum of the measure of the angles at a vertex of a cube?

SOLUTION

Each vertex is the meeting point of three squares. The measure of each angle in a square is 90°.

 $90^{\circ} \times 3 = 270^{\circ}$

The sum of the angles is 270°.

762 Saxon Geometry

Math Language

A tessellation is a

gaps or overlaps.

repeating pattern of polygons that completely

covers a plane with no

()

 (\bullet)